Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 764
1.
Nat Commun ; 15(1): 3888, 2024 May 08.
Article En | MEDLINE | ID: mdl-38719828

PRPF40A plays an important role in the regulation of pre-mRNA splicing by mediating protein-protein interactions in the early steps of spliceosome assembly. By binding to proteins at the 5´ and 3´ splice sites, PRPF40A promotes spliceosome assembly by bridging the recognition of the splices. The PRPF40A WW domains are expected to recognize proline-rich sequences in SF1 and SF3A1 in the early spliceosome complexes E and A, respectively. Here, we combine NMR, SAXS and ITC to determine the structure of the PRPF40A tandem WW domains in solution and characterize the binding specificity and mechanism for proline-rich motifs recognition. Our structure of the PRPF40A WW tandem in complex with a high-affinity SF1 peptide reveals contributions of both WW domains, which also enables tryptophan sandwiching by two proline residues in the ligand. Unexpectedly, a proline-rich motif in the N-terminal region of PRPF40A mediates intramolecular interactions with the WW tandem. Using NMR, ITC, mutational analysis in vitro, and immunoprecipitation experiments in cells, we show that the intramolecular interaction acts as an autoinhibitory filter for proof-reading of high-affinity proline-rich motifs in bona fide PRPF40A binding partners. We propose that similar autoinhibitory mechanisms are present in most WW tandem-containing proteins to enhance binding selectivity and regulation of WW/proline-rich peptide interaction networks.


Proline , Protein Binding , WW Domains , Humans , Amino Acid Motifs , Models, Molecular , Proline/metabolism , Proline/chemistry , RNA Splicing , RNA Splicing Factors/metabolism , RNA Splicing Factors/chemistry , RNA Splicing Factors/genetics , Scattering, Small Angle , Spliceosomes/metabolism , X-Ray Diffraction
2.
RNA Biol ; 21(1): 1-17, 2024 Jan.
Article En | MEDLINE | ID: mdl-38711165

Spliceosome assembly contributes an important but incompletely understood aspect of splicing regulation. Prp45 is a yeast splicing factor which runs as an extended fold through the spliceosome, and which may be important for bringing its components together. We performed a whole genome analysis of the genetic interaction network of the truncated allele of PRP45 (prp45(1-169)) using synthetic genetic array technology and found chromatin remodellers and modifiers as an enriched category. In agreement with related studies, H2A.Z-encoding HTZ1, and the components of SWR1, INO80, and SAGA complexes represented prominent interactors, with htz1 conferring the strongest growth defect. Because the truncation of Prp45 disproportionately affected low copy number transcripts of intron-containing genes, we prepared strains carrying intronless versions of SRB2, VPS75, or HRB1, the most affected cases with transcription-related function. Intron removal from SRB2, but not from the other genes, partly repaired some but not all the growth phenotypes identified in the genetic screen. The interaction of prp45(1-169) and htz1Δ was detectable even in cells with SRB2 intron deleted (srb2Δi). The less truncated variant, prp45(1-330), had a synthetic growth defect with htz1Δ at 16°C, which also persisted in the srb2Δi background. Moreover, htz1Δ enhanced prp45(1-330) dependent pre-mRNA hyper-accumulation of both high and low efficiency splicers, genes ECM33 and COF1, respectively. We conclude that while the expression defects of low expression intron-containing genes contribute to the genetic interactome of prp45(1-169), the genetic interactions between prp45 and htz1 alleles demonstrate the sensitivity of spliceosome assembly, delayed in prp45(1-169), to the chromatin environment.


Introns , Phenotype , RNA Splicing , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Spliceosomes , Spliceosomes/metabolism , Spliceosomes/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Gene Expression Regulation, Fungal , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , Histones/metabolism , Histones/genetics
3.
J Exp Clin Cancer Res ; 43(1): 141, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745192

BACKGROUND: Neuroblastoma (NB) patients with amplified MYCN often face a grim prognosis and are resistant to existing therapies, yet MYCN protein is considered undruggable. KAP1 (also named TRIM28) plays a crucial role in multiple biological activities. This study aimed to investigate the relationship between KAP1 and MYCN in NB. METHODS: Transcriptome analyses and luciferase reporter assay identified that KAP1 was a downstream target of MYCN. The effects of KAP1 on cancer cell proliferation and colony formation were explored using the loss-of-function assays in vitro and in vivo. RNA stability detection was used to examine the influence of KAP1 on MYCN expression. The mechanisms of KAP1 to maintain MYCN mRNA stabilization were mainly investigated by mass spectrum, immunoprecipitation, RIP-qPCR, and western blotting. In addition, a xenograft mouse model was used to reveal the antitumor effect of STM2457 on NB. RESULTS: Here we identified KAP1 as a critical regulator of MYCN mRNA stability by protecting the RNA N6-methyladenosine (m6A) reader YTHDC1 protein degradation. KAP1 was highly expressed in clinical MYCN-amplified NB and was upregulated by MYCN. Reciprocally, KAP1 knockdown reduced MYCN mRNA stability and inhibited MYCN-amplified NB progression. Mechanistically, KAP1 regulated the stability of MYCN mRNA in an m6A-dependent manner. KAP1 formed a complex with YTHDC1 and RNA m6A writer METTL3 to regulate m6A-modified MYCN mRNA stability. KAP1 depletion decreased YTHDC1 protein stability and promoted MYCN mRNA degradation. Inhibiting MYCN mRNA m6A modification synergized with chemotherapy to restrain tumor progression in MYCN-amplified NB. CONCLUSIONS: Our research demonstrates that KAP1, transcriptionally activated by MYCN, forms a complex with YTHDC1 and METTL3, which in turn maintain the stabilization of MYCN mRNA in an m6A-dependent manner. Targeting m6A modification by STM2457, a small-molecule inhibitor of METTL3, could downregulate MYCN expression and attenuate tumor proliferation. This finding provides a new alternative putative therapeutic strategy for MYCN-amplified NB.


N-Myc Proto-Oncogene Protein , Neuroblastoma , Tripartite Motif-Containing Protein 28 , Humans , Neuroblastoma/genetics , Neuroblastoma/metabolism , Neuroblastoma/pathology , Mice , Animals , N-Myc Proto-Oncogene Protein/genetics , N-Myc Proto-Oncogene Protein/metabolism , Tripartite Motif-Containing Protein 28/metabolism , Tripartite Motif-Containing Protein 28/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA Stability , Cell Line, Tumor , RNA Splicing Factors/metabolism , RNA Splicing Factors/genetics , Cell Proliferation , Female , Gene Expression Regulation, Neoplastic , Mice, Nude , Adenosine/analogs & derivatives , Adenosine/metabolism
4.
Sci Adv ; 10(19): eadn1547, 2024 May 10.
Article En | MEDLINE | ID: mdl-38718117

Pre-mRNA splicing is a fundamental step in gene expression, conserved across eukaryotes, in which the spliceosome recognizes motifs at the 3' and 5' splice sites (SSs), excises introns, and ligates exons. SS recognition and pairing is often influenced by protein splicing factors (SFs) that bind to splicing regulatory elements (SREs). Here, we describe SMsplice, a fully interpretable model of pre-mRNA splicing that combines models of core SS motifs, SREs, and exonic and intronic length preferences. We learn models that predict SS locations with 83 to 86% accuracy in fish, insects, and plants and about 70% in mammals. Learned SRE motifs include both known SF binding motifs and unfamiliar motifs, and both motif classes are supported by genetic analyses. Our comparisons across species highlight similarities between non-mammals, increased reliance on intronic SREs in plant splicing, and a greater reliance on SREs in mammalian splicing.


Exons , Introns , RNA Precursors , RNA Splice Sites , RNA Splicing , RNA Precursors/genetics , RNA Precursors/metabolism , Animals , Introns/genetics , Exons/genetics , Genes, Plant , Models, Genetic , Spliceosomes/metabolism , Spliceosomes/genetics , Plants/genetics , Humans , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism
5.
Sci Adv ; 10(14): eadj4009, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38569025

Triple-negative breast cancer (TNBC) is the deadliest subtype of breast cancer owing to the lack of effective therapeutic targets. Splicing factor 3a subunit 2 (SF3A2), a poorly defined splicing factor, was notably elevated in TNBC tissues and promoted TNBC progression, as confirmed by cell proliferation, colony formation, transwell migration, and invasion assays. Mechanistic investigations revealed that E3 ubiquitin-protein ligase UBR5 promoted the ubiquitination-dependent degradation of SF3A2, which in turn regulated UBR5, thus forming a feedback loop to balance these two oncoproteins. Moreover, SF3A2 accelerated TNBC progression by, at least in part, specifically regulating the alternative splicing of makorin ring finger protein 1 (MKRN1) and promoting the expression of the dominant and oncogenic isoform, MKRN1-T1. Furthermore, SF3A2 participated in the regulation of both extrinsic and intrinsic apoptosis, leading to cisplatin resistance in TNBC cells. Collectively, these findings reveal a previously unknown role of SF3A2 in TNBC progression and cisplatin resistance, highlighting SF3A2 as a potential therapeutic target for patients with TNBC.


Cisplatin , Triple Negative Breast Neoplasms , Humans , Cisplatin/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Alternative Splicing , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism
6.
J Exp Clin Cancer Res ; 43(1): 126, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38671459

BACKGROUND: Aberrant alternative splicing (AS) is a pervasive event during colorectal cancer (CRC) development. SF3B3 is a splicing factor component of U2 small nuclear ribonucleoproteins which are crucial for early stages of spliceosome assembly. The role of SF3B3 in CRC remains unknown. METHODS: SF3B3 expression in human CRCs was analyzed using publicly available CRC datasets, immunohistochemistry, qRT-PCR, and western blot. RNA-seq, RNA immunoprecipitation, and lipidomics were performed in SF3B3 knockdown or overexpressing CRC cell lines. CRC cell xenografts, patient-derived xenografts, patient-derived organoids, and orthotopic metastasis mouse models were utilized to determine the in vivo role of SF3B3 in CRC progression and metastasis. RESULTS: SF3B3 was upregulated in CRC samples and associated with poor survival. Inhibition of SF3B3 by RNA silencing suppressed the proliferation and metastasis of CRC cells in vitro and in vivo, characterized by mitochondria injury, increased reactive oxygen species (ROS), and apoptosis. Mechanistically, silencing of SF3B3 increased mTOR exon-skipped splicing, leading to the suppression of lipogenesis via mTOR-SREBF1-FASN signaling. The combination of SF3B3 shRNAs and mTOR inhibitors showed synergistic antitumor activity in patient-derived CRC organoids and xenografts. Importantly, we identified SF3B3 as a critical regulator of mTOR splicing and autophagy in multiple cancers. CONCLUSIONS: Our findings revealed that SF3B3 promoted CRC progression and metastasis by regulating mTOR alternative splicing and SREBF1-FASN-mediated lipogenesis, providing strong evidence to support SF3B3 as a druggable target for CRC therapy.


Alternative Splicing , Colorectal Neoplasms , Disease Progression , Neoplasm Metastasis , TOR Serine-Threonine Kinases , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Mice , Animals , TOR Serine-Threonine Kinases/metabolism , RNA Splicing Factors/metabolism , RNA Splicing Factors/genetics , Cell Line, Tumor , Female , Cell Proliferation , Male
7.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article En | MEDLINE | ID: mdl-38673778

Pre-mRNA splicing plays a key role in the regulation of gene expression. Recent discoveries suggest that defects in pre-mRNA splicing, resulting from the dysfunction of certain splicing factors, can impact the expression of genes crucial for genome surveillance mechanisms, including those involved in cellular response to DNA damage. In this study, we analyzed how cells with a non-functional spliceosome-associated Gpl1-Gih35-Wdr83 complex respond to DNA damage. Additionally, we investigated the role of this complex in regulating the splicing of factors involved in DNA damage repair. Our findings reveal that the deletion of any component within the Gpl1-Gih35-Wdr83 complex leads to a significant accumulation of unspliced pre-mRNAs of DNA repair factors. Consequently, mutant cells lacking this complex exhibit increased sensitivity to DNA-damaging agents. These results highlight the importance of the Gpl1-Gih35-Wdr83 complex in regulating the expression of DNA repair factors, thereby protecting the stability of the genome following DNA damage.


DNA Damage , DNA Repair , RNA Splicing , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Spliceosomes/metabolism , Spliceosomes/genetics , RNA Splicing Factors/metabolism , RNA Splicing Factors/genetics , Gene Expression Regulation, Fungal , RNA Precursors/genetics , RNA Precursors/metabolism
8.
Oncogene ; 43(20): 1565-1578, 2024 May.
Article En | MEDLINE | ID: mdl-38561505

Accumulating studies suggest that splicing factors play important roles in many diseases including human cancers. Our study revealed that WBP11, a core splicing factor, is highly expressed in ovarian cancer (OC) tissues and associated with a poor prognosis. WBP11 inhibition significantly impaired the proliferation and mobility of ovarian cancer cells in vitro and in vivo. Furthermore, FOXM1 transcriptionally activated WBP11 expression by directly binding to its promoter in OC cells. Importantly, RNA-seq and alternative splicing event analysis revealed that WBP11 silencing decreased the expression of MCM7 by regulating intron 4 retention. MCM7 inhibition attenuated the increase in malignant behaviors of WBP11-overexpressing OC cells. Overall, WBP11 was identified as an oncogenic splicing factor that contributes to malignant progression by repressing intron 4 retention of MCM7 in OC cells. Thus, WBP11 is an oncogenic splicing factor with potential therapeutic and prognostic implications in OC.


Cell Proliferation , Disease Progression , Gene Expression Regulation, Neoplastic , Introns , Minichromosome Maintenance Complex Component 7 , Ovarian Neoplasms , Humans , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Female , Introns/genetics , Minichromosome Maintenance Complex Component 7/genetics , Minichromosome Maintenance Complex Component 7/metabolism , Animals , Cell Line, Tumor , Mice , Cell Proliferation/genetics , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , Prognosis , Forkhead Box Protein M1/genetics , Forkhead Box Protein M1/metabolism , Mice, Nude , Alternative Splicing/genetics
9.
Mol Cell ; 84(8): 1475-1495.e18, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38521065

Transcription and splicing of pre-messenger RNA are closely coordinated, but how this functional coupling is disrupted in human diseases remains unexplored. Using isogenic cell lines, patient samples, and a mutant mouse model, we investigated how cancer-associated mutations in SF3B1 alter transcription. We found that these mutations reduce the elongation rate of RNA polymerase II (RNAPII) along gene bodies and its density at promoters. The elongation defect results from disrupted pre-spliceosome assembly due to impaired protein-protein interactions of mutant SF3B1. The decreased promoter-proximal RNAPII density reduces both chromatin accessibility and H3K4me3 marks at promoters. Through an unbiased screen, we identified epigenetic factors in the Sin3/HDAC/H3K4me pathway, which, when modulated, reverse both transcription and chromatin changes. Our findings reveal how splicing factor mutant states behave functionally as epigenetic disorders through impaired transcription-related changes to the chromatin landscape. We also present a rationale for targeting the Sin3/HDAC complex as a therapeutic strategy.


Chromatin , Neoplasms , Animals , Humans , Mice , Chromatin/genetics , Mutation , Phosphoproteins/genetics , Phosphoproteins/metabolism , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , RNA Splicing/genetics , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism
10.
Wiley Interdiscip Rev RNA ; 15(2): e1838, 2024.
Article En | MEDLINE | ID: mdl-38509732

Disruptions in spatiotemporal gene expression can result in atypical brain function. Specifically, autism spectrum disorder (ASD) is characterized by abnormalities in pre-mRNA splicing. Abnormal splicing patterns have been identified in the brains of individuals with ASD, and mutations in splicing factors have been found to contribute to neurodevelopmental delays associated with ASD. Here we review studies that shed light on the importance of splicing observed in ASD and that explored the intricate relationship between splicing factors and ASD, revealing how disruptions in pre-mRNA splicing may underlie ASD pathogenesis. We provide an overview of the research regarding all splicing factors associated with ASD and place a special emphasis on five specific splicing factors-HNRNPH2, NOVA2, WBP4, SRRM2, and RBFOX1-known to impact the splicing of ASD-related genes. In the discussion of the molecular mechanisms influenced by these splicing factors, we lay the groundwork for a deeper understanding of ASD's complex etiology. Finally, we discuss the potential benefit of unraveling the connection between splicing and ASD for the development of more precise diagnostic tools and targeted therapeutic interventions. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Evolution and Genomics > Computational Analyses of RNA RNA-Based Catalysis > RNA Catalysis in Splicing and Translation.


Autism Spectrum Disorder , Autistic Disorder , Humans , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Autistic Disorder/genetics , RNA Precursors/genetics , RNA Precursors/metabolism , RNA Splicing/genetics , RNA Splicing Factors/metabolism , Neuro-Oncological Ventral Antigen
11.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(3): 279-285, 2024 Mar.
Article Zh | MEDLINE | ID: mdl-38538357

OBJECTIVE: To investigate the regulatory role of Wilms tumor 1-associating protein (WTAP) in hypoxia/reoxygenation (H/R)-induced cardiomyocyte injury and its molecular mechanism. METHODS: (1) Experiment I: H9C2 cardiomyocytes were divided into blank control group and H/R model group. H/R was used to induce myocardial ischemia/reperfusion (I/R) injury model in H9C2 cells. The blank control group was not treated. N6-methyladenosine (m6A) RNA methylation assay kit was used to detect the level of m6A. Real-time fluorescent quantitative polymerase chain reaction (RT-qPCR) and Western blotting were used to detect the mRNA and protein expression levels of methyltransferases [WTAP, methyltransferase-like proteins (METTL3, METTL14)], respectively. (2) Experiment II: H9C2 cardiomyocytes were divided into blank control group, H/R+sh-NC group, and H/R+sh-WTAP group. sh-WTAP was transfected to knock down the expression of WTAP in H/R+sh-WTAP group, and the model establishment method in the other groups was the same as experiment I. At 48 hours after transfection, the apoptosis rate of cells was detected by flow cytometry. The protein expressions of WTAP, activated caspase-3, activated poly (ADP-ribose) polymerase (PARP), activating transcription factor 4 (ATF4), proline-rich receptor-like protein kinase (PERK), phosphorylated PERK (p-PERK) and CCAAT/enhancer-binding protein homologous protein (CHOP) were detected by Western blotting. The positive expression of ATF4 was observed by immunofluorescence staining. (3) Experiment III: H9C2 cardiomyocytes were divided into blank control group, H/R+sh-NC group, H/R+sh-WTAP group and H/R+sh-WTAP+ATF4 group. The overexpression plasmid ATF4 was transfected into H9C2 cardiomyocytes, and the modeling method of the other groups were modeled the same as experiment II. The apoptosis rate was detected by flow cytometry. Western blotting was used to detect the protein expressions of ATF4, CHOP, activated caspase-3 and activated PARP. RESULTS: (1) Experiment I: the methylation level of m6A in the H/R group was significantly higher than that in the blank control group. RT-qPCR results showed that the gene expressions of METTL3, METTL14 and WTAP in the H/R model group were significantly higher than those in the blank control group, and WTAP was the most significantly up-regulated. Western blotting results showed the same trend. These results suggested that the expression level of methyltransferase WTAP is significantly up-regulated in H/R-induced cardiomyocytes. (2) Experiment II: the apoptosis level in H/R+sh-WTAP group was significantly lower than that in H/R+sh-NC group [(14.16±1.58)% vs. (24.51±2.38)%, P < 0.05]. Western blotting results showed that the protein expressions of WTAP, activated caspase-3, activated PARP, p-PERK, ATF4 and CHOP in the H/R+sh-WTAP group were significantly lower than those in the H/R+sh-NC group. Fluorescence microscopy results showed that the ATF4 positive signal in the H/R+sh-WTAP group was significantly weaker than that in the H/R+sh-NC group [(19.36±1.81)% vs. (32.83±2.69)%, P < 0.01]. The above results suggested that knockdown of WTAP could inhibit H/R-induced cardiomyocyte apoptosis and endoplasmic reticulum stress. (3) Experiment III: the apoptosis level of H/R+sh-WTAP+ATF4 group was significantly higher than that of H/R+sh-WTAP group [(26.61±2.76)% vs. (17.14±0.87)%, P < 0.05]. Western blotting results showed that the protein expressions of ATF4, CHOP, activated caspase-3 and activated PARP in the H/R+sh-WTAP+ATF4 group were significantly higher than those in the H/R+sh-WTAP group. These results suggested that overexpression of ATF4 reversed the inhibitory effect of sh-WTAP on endoplasmic reticulum stress and apoptosis in H/R-induced cardiomyocytes. CONCLUSIONS: Methyltransferase WTAP could regulate ATF4 expression, mediate cell apoptosis and endoplasmic reticulum stress, and promote H/R-induced myocardial cell injury.


Heart Injuries , Myocytes, Cardiac , Humans , Caspase 3/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Hypoxia/metabolism , Methyltransferases/metabolism , Methyltransferases/pharmacology , Apoptosis , Endoplasmic Reticulum Stress , RNA Splicing Factors/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/pharmacology
12.
Nucleic Acids Res ; 52(7): e37, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38452210

G-quadruplexes (G4s) are noncanonical nucleic acid structures pivotal to cellular processes and disease pathways. Deciphering G4-interacting proteins is imperative for unraveling G4's biological significance. In this study, we developed a G4-targeting biotin ligase named G4PID, meticulously assessing its binding affinity and specificity both in vitro and in vivo. Capitalizing on G4PID, we devised a tailored approach termed G-quadruplex-interacting proteins specific biotin-ligation procedure (PLGPB) to precisely profile G4-interacting proteins. Implementing this innovative strategy in live cells, we unveiled a cohort of 149 potential G4-interacting proteins, which exhibiting multifaceted functionalities. We then substantiate the directly binding affinity of 7 candidate G4-interacting-proteins (SF3B4, FBL, PP1G, BCL7C, NDUV1, ILF3, GAR1) in vitro. Remarkably, we verified that splicing factor 3B subunit 4 (SF3B4) binds preferentially to the G4-rich 3' splice site and the corresponding splicing sites are modulated by the G4 stabilizer PDS, indicating the regulating role of G4s in mRNA splicing procedure. The PLGPB strategy could biotinylate multiple proteins simultaneously, which providing an opportunity to map G4-interacting proteins network in living cells.


Biotin , G-Quadruplexes , Humans , Biotin/metabolism , Protein Binding , RNA Splicing Factors/metabolism , Carbon-Nitrogen Ligases/metabolism , Carbon-Nitrogen Ligases/genetics , RNA Splicing , HEK293 Cells , RNA-Binding Proteins/metabolism , HeLa Cells
13.
Dokl Biochem Biophys ; 515(1): 41-47, 2024 Apr.
Article En | MEDLINE | ID: mdl-38472668

High-throughput ribosome profiling demonstrates the translation of thousands of small open reading frames located in the 5' untranslated regions of messenger RNAs (upstream ORFs). Upstream ORF can both perform a regulatory function by influencing the translation of the downstream main ORF and encode a small functional protein or microprotein. In this work, we showed that the 5' untranslated region of the PRPF19 mRNA encodes an upstream ORF that is translated in human cells. Inactivation of this upstream ORF reduces the viability of human cells.


DNA Repair Enzymes , Nuclear Proteins , Open Reading Frames , RNA Splicing Factors , Humans , 5' Untranslated Regions , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , Nuclear Proteins/metabolism , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
14.
Environ Int ; 185: 108494, 2024 Mar.
Article En | MEDLINE | ID: mdl-38364571

Hexavalent chromium [Cr(VI)] is a common environmental pollutant and chronic exposure to Cr(VI) causes lung cancer in humans, however, the mechanism of Cr(VI) carcinogenesis has not been well understood. Lung cancer is the leading cause of cancer-related death, although the mechanisms of how lung cancer develops and progresses have been poorly understood. While long non-coding RNAs (lncRNAs) are found abnormally expressed in cancer, how dysregulated lncRNAs contribute to carcinogenesis remains largely unknown. The goal of this study is to investigate the mechanism of Cr(VI)-induced lung carcinogenesis focusing on the role of the lncRNA ABHD11 antisense RNA 1 (tail to tail) (ABHD11-AS1). It was found that the lncRNA ABHD11-AS1 expression levels are up-regulated in chronic Cr(VI) exposure-transformed human bronchial epithelial cells, chronically Cr(VI)-exposed mouse lung tissues, and human lung cancer cells as well. Bioinformatics analysis revealed that ABHD11-AS1 levels are up-regulated in lung adenocarcinomas (LUADs) tissues and associated with worse overall survival of LUAD patients but not in lung squamous cell carcinomas. It was further determined that up-regulation of ABHD11-AS1 expression plays an important role in chronic Cr(VI) exposure-induced cell malignant transformation and tumorigenesis, and the stemness of human lung cancer cells. Mechanistically, it was found that ABHD11-AS1 directly binds SART3 (spliceosome associated factor 3, U4/U6 recycling protein). The interaction of ABHD11-AS1 with SART3 promotes USP15 (ubiquitin specific peptidase 15) nuclear localization. Nuclear localized USP15 interacts with pre-mRNA processing factor 19 (PRPF19) to increase CD44 RNA alternative splicing activating ß-catenin and enhancing cancer stemness. Together, these findings indicate that lncRNA ABHD11-AS1 interacts with SART3 and regulates CD44 RNA alternative splicing to promote cell malignant transformation and lung carcinogenesis.


Chromium , DNA Repair Enzymes , Hyaluronan Receptors , Lung Neoplasms , Nuclear Proteins , RNA, Long Noncoding , Serine Proteases , Ubiquitin-Specific Proteases , Humans , Animals , Mice , RNA, Antisense/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Alternative Splicing , Carcinogenesis/genetics , Cell Transformation, Neoplastic , Lung , Lung Neoplasms/genetics , Cell Proliferation/genetics , Cell Line, Tumor , Antigens, Neoplasm/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism
15.
J Stroke Cerebrovasc Dis ; 33(4): 107613, 2024 Apr.
Article En | MEDLINE | ID: mdl-38301749

OBJECTIVES: Previous studies have identified abnormal expression of lncRNA SNHG12 in ischemic stroke, but the underlying molecular mechanism remains unclear. MATERIALS AND METHODS: Through database predictions, m6A methylation sites were found on SNHG12, suggesting post-transcriptional modification. To further elucidate the role of SNHG12 and m6A methyltransferase WTAP in oxygen-glucose deprivation/reperfusion (OGD/R)-induced damage in cerebral microvascular endothelial cells, we conducted investigations. Additionally, we examined the impact of m6A methyltransferase WTAP on SNHG12 expression. RESULTS: Overexpressing SNHG12 in bEnd.3 cells was found to inhibit cell proliferation and promote apoptosis, as well as activate the production of reactive oxygen species and inflammatory cytokines (E-selectin, IL-6 and MCP-1), along with angiogenic proteins (VEGFA and FGFb). Conversely, SNHG12 knockdown alleviated OGD/R-induced damage to BEnd.3 cells, resulting in improved cell proliferation, reduced apoptosis, decreased ROS and LDH production, as well as diminished expression of inflammatory cytokines (E-selectin, IL-6 and MCP-1) and angiogenic proteins (VEGFA and FGFb). Furthermore, WTAP was found to positively regulate SNHG12 expression, and WTAP knockdown in bEnd.3 cells under the OGD/R conditions inhibited cell proliferation, promoted apoptosis, and increased ROS and LDH production. CONCLUSION: These findings suggest that WTAP may play a crucial role in SNHG12-mediated OGD/R-induced damage in bEnd.3 cells. More molecular experiments are needed to further analyze its mechanism. Overall, our study helps to enrich our understanding of the dysregulation of SNHG12 in ischemic stroke.


Cell Cycle Proteins , Ischemic Stroke , RNA, Long Noncoding , Reperfusion Injury , Animals , Humans , Mice , Oxygen/metabolism , Endothelial Cells/metabolism , Reactive Oxygen Species/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , E-Selectin , Glucose , Interleukin-6/metabolism , Ischemic Stroke/metabolism , Reperfusion , Angiogenic Proteins/metabolism , Methyltransferases/metabolism , Reperfusion Injury/metabolism , Apoptosis , RNA Splicing Factors/metabolism
16.
J Biol Chem ; 300(3): 105772, 2024 Mar.
Article En | MEDLINE | ID: mdl-38382674

Pre-mRNA splicing is a precise regulated process and is crucial for system development and homeostasis maintenance. Mutations in spliceosomal components have been found in various hematopoietic malignancies (HMs) and have been considered as oncogenic derivers of HMs. However, the role of spliceosomal components in normal and malignant hematopoiesis remains largely unknown. Pre-mRNA processing factor 31 (PRPF31) is a constitutive spliceosomal component, which mutations are associated with autosomal dominant retinitis pigmentosa. PRPF31 was found to be mutated in several HMs, but the function of PRPF31 in normal hematopoiesis has not been explored. In our previous study, we generated a prpf31 knockout (KO) zebrafish line and reported that Prpf31 regulates the survival and differentiation of retinal progenitor cells by modulating the alternative splicing of genes involved in mitosis and DNA repair. In this study, by using the prpf31 KO zebrafish line, we discovered that prpf31 KO zebrafish exhibited severe defects in hematopoietic stem and progenitor cell (HSPC) expansion and its sequentially differentiated lineages. Immunofluorescence results showed that Prpf31-deficient HSPCs underwent malformed mitosis and M phase arrest during HSPC expansion. Transcriptome analysis and experimental validations revealed that Prpf31 deficiency extensively perturbed the alternative splicing of mitosis-related genes. Collectively, our findings elucidate a previously undescribed role for Prpf31 in HSPC expansion, through regulating the alternative splicing of mitosis-related genes.


RNA Splicing Factors , Zebrafish Proteins , Zebrafish , Animals , Embryonic Development , Mutation , RNA Precursors/metabolism , RNA Splicing Factors/metabolism , Stem Cells/metabolism , Zebrafish/genetics , Zebrafish/growth & development , Zebrafish/metabolism , Zebrafish Proteins/metabolism
17.
Nat Commun ; 15(1): 1262, 2024 Feb 10.
Article En | MEDLINE | ID: mdl-38341452

Replication fork reversal, a critical protective mechanism against replication stress in higher eukaryotic cells, is orchestrated via a series of coordinated enzymatic reactions. The Bloom syndrome gene product, BLM, a member of the highly conserved RecQ helicase family, is implicated in this process, yet its precise regulation and role remain poorly understood. In this study, we demonstrate that the GCFC domain-containing protein TFIP11 forms a complex with the BLM helicase. TFIP11 exhibits a preference for binding to DNA substrates that mimic the structure generated at stalled replication forks. Loss of either TFIP11 or BLM leads to the accumulation of the other protein at stalled forks. This abnormal accumulation, in turn, impairs RAD51-mediated fork reversal and slowing, sensitizes cells to replication stress-inducing agents, and enhances chromosomal instability. These findings reveal a previously unidentified regulatory mechanism that modulates the activities of BLM and RAD51 at stalled forks, thereby impacting genome integrity.


DNA Damage Tolerance , DNA Replication , Humans , RecQ Helicases/genetics , RecQ Helicases/metabolism , DNA/genetics , DNA/metabolism , Proteins/metabolism , Genomic Instability , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , RNA Splicing Factors/metabolism
18.
Transl Psychiatry ; 14(1): 99, 2024 Feb 19.
Article En | MEDLINE | ID: mdl-38374212

RBFOX1 is a highly pleiotropic gene that contributes to several psychiatric and neurodevelopmental disorders. Both rare and common variants in RBFOX1 have been associated with several psychiatric conditions, but the mechanisms underlying the pleiotropic effects of RBFOX1 are not yet understood. Here we found that, in zebrafish, rbfox1 is expressed in spinal cord, mid- and hindbrain during developmental stages. In adults, expression is restricted to specific areas of the brain, including telencephalic and diencephalic regions with an important role in receiving and processing sensory information and in directing behaviour. To investigate the contribution of rbfox1 to behaviour, we used rbfox1sa15940, a zebrafish mutant line with TL background. We found that rbfox1sa15940 mutants present hyperactivity, thigmotaxis, decreased freezing behaviour and altered social behaviour. We repeated these behavioural tests in a second rbfox1 mutant line with a different genetic background (TU), rbfox1del19, and found that rbfox1 deficiency affects behaviour similarly in this line, although there were some differences. rbfox1del19 mutants present similar thigmotaxis, but stronger alterations in social behaviour and lower levels of hyperactivity than rbfox1sa15940 fish. Taken together, these results suggest that mutations in rbfox1 lead to multiple behavioural changes in zebrafish that might be modulated by environmental, epigenetic and genetic background effects, and that resemble phenotypic alterations present in Rbfox1-deficient mice and in patients with different psychiatric conditions. Our study, thus, highlights the evolutionary conservation of rbfox1 function in behaviour and paves the way to further investigate the mechanisms underlying rbfox1 pleiotropy on the onset of neurodevelopmental and psychiatric disorders.


Developmental Disabilities , Mental Disorders , RNA-Binding Proteins , Zebrafish , Animals , Brain/metabolism , Phenotype , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , RNA-Binding Proteins/genetics , Zebrafish/genetics , Zebrafish/metabolism , Mental Disorders/genetics , Developmental Disabilities/genetics
19.
J Exp Clin Cancer Res ; 43(1): 39, 2024 Feb 02.
Article En | MEDLINE | ID: mdl-38303029

BACKGROUND: Ubiquitination plays an important role in proliferating and invasive characteristic of glioblastoma (GBM), similar to many other cancers. Tripartite motif 25 (TRIM25) is a member of the TRIM family of proteins, which are involved in tumorigenesis through substrate ubiquitination. METHODS: Difference in TRIM25 expression levels between nonneoplastic brain tissue samples and primary glioma samples was demonstrated using publicly available glioblastoma database, immunohistochemistry, and western blotting. TRIM25 knockdown GBM cell lines (LN229 and U251) and patient derived GBM stem-like cells (GSCs) GBM#021 were used to investigate the function of TRIM25 in vivo and in vitro. Co-immunoprecipitation (Co-IP) and mass spectrometry analysis were performed to identify NONO as a protein that interacts with TRIM25. The molecular mechanisms underlying the promotion of GBM development by TRIM25 through NONO were investigated by RNA-seq and validated by qRT-PCR and western blotting. RESULTS: We observed upregulation of TRIM25 in GBM, correlating with enhanced glioblastoma cell growth and invasion, both in vitro and in vivo. Subsequently, we screened a panel of proteins interacting with TRIM25; mass spectrometry and co-immunoprecipitation revealed that NONO was a potential substrate of TRIM25. TRIM25 knockdown reduced the K63-linked ubiquitination of NONO, thereby suppressing the splicing function of NONO. Dysfunctional NONO resulted in the retention of the second intron in the pre-mRNA of PRMT1, inhibiting the activation of the PRMT1/c-MYC pathway. CONCLUSIONS: Our study demonstrates that TRIM25 promotes glioblastoma cell growth and invasion by regulating the PRMT1/c-MYC pathway through mediation of the splicing factor NONO. Targeting the E3 ligase activity of TRIM25 or the complex interactions between TRIM25 and NONO may prove beneficial in the treatment of GBM.


Glioblastoma , Transcription Factors , Tripartite Motif Proteins , Humans , Cell Line, Tumor , Cell Proliferation , DNA-Binding Proteins/genetics , Gene Expression Regulation, Neoplastic , Glioblastoma/metabolism , Glioblastoma/pathology , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Repressor Proteins/metabolism , RNA Splicing Factors/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
20.
Exp Mol Med ; 56(1): 156-167, 2024 Feb.
Article En | MEDLINE | ID: mdl-38172596

Osteoarthritis (OA) is the most common form of arthritis. However, the exact pathogenesis remains unclear. Emerging evidence shows that N6-methyladenosine (m6A) modification may have an important role in OA pathogenesis. This study aimed to investigate the role of m6A writers and the underlying mechanisms in osteoarthritic cartilage. Among m6A methyltransferases, Wilms tumor 1-associated protein (WTAP) expression most significantly differed in clinical osteoarthritic cartilage. WTAP regulated extracellular matrix (ECM) degradation, inflammation and antioxidation in human chondrocytes. Mechanistically, the m6A modification and relative downstream targets in osteoarthritic cartilage were assessed by methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing, which indicated that the expression of frizzled-related protein (FRZB), a secreted Wnt antagonist, was abnormally decreased and accompanied by high m6A modification in osteoarthritic cartilage. In vitro dysregulated WTAP had positive effects on ß-catenin expression by targeting FRZB, which finally contributed to the cartilage injury phenotype in chondrocytes. Intra-articular injection of adeno-associated virus-WTAP alleviated OA progression in a mouse model, while this protective effect could be reversed by the application of a Wnt/ß-catenin activator. In summary, this study revealed that WTAP-dependent RNA m6A modification contributed to Wnt/ß-catenin pathway activation and OA progression through post-transcriptional regulation of FRZB mRNA, thus providing a potentially effective therapeutic strategy for OA treatment.


Osteoarthritis , beta Catenin , Animals , Humans , Mice , beta Catenin/genetics , beta Catenin/metabolism , Cartilage/metabolism , Cell Cycle Proteins/metabolism , Chondrocytes/metabolism , Osteoarthritis/metabolism , RNA Splicing Factors/metabolism , RNA, Messenger/genetics , Wnt Signaling Pathway/physiology
...